Publications

Transformer and GAN-Based Super-Resolution Reconstruction Network for Medical Images

Published in Tsinghua Science and Technology, 2023

Super-resolution reconstruction in medical imaging has become more demanding due to the necessity of obtaining high-quality images with minimal radiation dose, such as in low-field magnetic resonance imaging (MRI). However, image super-resolution reconstruction remains a difficult task because of the complexity and high textual requirements for diagnosis purpose. In this paper, we offer a deep learning based strategy for reconstructing medical images from low resolutions utilizing Transformer and generative adversarial networks (T-GANs). The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction. Furthermore, we weighted the combination of content loss, adversarial loss, and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN. In comparison to established measures like peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.

Download here

Coalition Control Model: A Dynamic Resource Distribution Method Based on Model Predictive Control

Published in arXiv, 2020

Optimization of resource distribution has been a challenging topic in current society. To explore this topic, we develop a Coalition Control Model (CCM) based on the Model Predictive Control (MPC) and test it using a fishing model with linear parameters. The fishing model focuses on the problem of distributing fishing fleets in certain regions to maximize fish caught using either exhaustive or heuristic search. Our method introduces a communication mechanism to allow fishing fleets to merge or split, after which new coalitions can be automatically formed. Having the coalition structure stabilized, the system reaches the equilibrium state through the Nash-Bargaining process. Our experiments on the hypothetical fishing model demonstrated that the CCM can dynamically distribute limited resources in complex scenarios.

Download here